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Abstract. A representation of quantum mechanics in terms of classical probability theory 
by means of integration in Hilbert space is discussed. This formal hidden-variables 
representation is analysed in the context of impossibility proofs concerning hidden- 
variables theories. The structural analogy of this formulation of quantum theory with 
classical statistical mechanics is used to elucidate the difference between classical 
mechanics and quantum mechanics. 

1. Introduction 

Whereas the formalism of quantum mechanics is well accepted in the form proposed by 
the founders of the theory, the interpretation of this formalism is still a subject of 
discussion. For a general introduction to the fornialism of quantum theory see Jauch 
(1968) and for information concerning the interpretation of the formalism cf Jammer 
(1974). Today the Copenhagen interpretation, which is represented in most of the 
textbooks of quantum theory, has become the orthodox point of view, whereas the 
statistical interpretation has attracted more and more followers in recent years. 

The logical reason for the ability to interpret quantum theory can be traced to the 
fact that the formalism contains theoretical terms without empirical counterparts. 
These are the wavefunctions or the vectors of Hilbert space. Any interpretation of 
quantum theory is devoted to clarifying the meaning of these quantities. 

Here we are concerned with the consequences of one aspect in which the familiar 
interpretations differ from one another. Whereas the Copenhagen interpretation 
declares that the wavefunction gives the complete description of the state of an 
individual system, the statistical interpretation insists that the wavefunction refers to a 
probabilistic situation which empirically can only be realised by an ensemble. The 
Copenhagen interpretation regards quantum mechanics as an enlargement of the 
classical mechanics of individual systems, whereas the statistical interpretation-as 
emphasised by Einstein (1936)-considers it as an enlargement of classical statistical 
mechanics. As a result, in the frame of the statistical interpretation, hidden variables 
are possible but are not required. The statistical interpretation admits that the 
expectation value of quantum mechanics may be expressed as an expectation value in 
the sense of classical probability theory. The sample space of this probabilistic 
formulation is built by the hidden variables which are assumed to be governed by a 
hidden deterministic subdynamics. 
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Despite the fact that many famous impossibility proofs exist for hidden-variables 
theories, we recently have shown (see Bach 1979) that it is possible to express quantum 
mechanical expectation values by means of integration in Hilbert space. For reasons 
which will become more obvious in the following sections, we have called this formal 
hidden-variables theory a probabilistic formulation of quantum theory. The aim of this 
paper is to discuss this new representation of quantum theory. After introducing the 
formalism of probabilistic quantum mechanics we investigate the meaning of some 
impossibility proofs in the context of this representation. On the other hand, as we have 
particularly derived a representation of quantum theory which structurally is equivalent 
to classical statistical mechanics, we elucidate the differences between classical 
mechanics and quantum mechanics. Finally we try to analyse the meaning of prob- 
ability in quantum theory. 

2. Probabilistic quantum mechanks 

The central expression in the axioms of quantum theory which connects the empirical 
quantities with the terms of the formalism is the expectation value. Representing 
observables by self-adjoint operators A and the state of the system by statistical 
operators W, the expectation value of the observable A,  given the state W, is expressed 
as 

Ew(A)  = Tr( WA). (1) 

The statistical operator W is a positive, self-adjoint operator of the trace class on a 
complex separable Hilbert space H. The fact that covariance operators of probability 
measures, defined on a separable Hilbert space H, are positive and self-adjoint 
operators on H has been the central observation from which the probabilistic 
representation results. For probability measures in infinite-dimensional spaces, 
especially real Banach spaces, cf Kuo (1975). 

in H is a measure on the Bore1 field B ( H )  generated by the 
open subsets of the topological vector space H which satisfies p ( H )  = 1. The covari- 
ance operator C of a probability measure p on H is defined by 

A probability measure 

where 5, $, 4 E H .  
The fact that the statistical operator W has the defining properties of a covariance 

operator is used now to define a probability measure pw on (H, B ( H ) )  which is 
characterised by the fact that W is just its covariance operator. We remark that this 
measure is by no means uniquely determined. By analogy with the procedure in Bach 
(1979, 1980) this measure allows us to establish the fundamental identity 

which represents the probabilistic formulation of quantum theory. The state space of the 
system, namely H, constitutes the sample space, and the state and the observable are 



Classical aspects of quantum theory 127 

represented by the measure F W  and the measurable function f A  E L'(H, F ~ ) ,  

respectively. 
Obviously the quantum mechanics of this formulation in terms of classical prob- 

ability theory is contained in the measurable function fA(4)  which expresses the 
expectation value of the observable A in the unnormalised state W, = I4)(4 I,4 E H. In 
contrast to the conventional expression (1) where all matrix elements of A with respect 
to a complete orthonormal system are needed, the present representation continuously 
sums up the (uncountable) set of all diagonal elements of A .  In combination with an 
appropriate measure this is sufficient for a reconstruction of equation (1) as all matrix 
elements of a self-adjoint operator can be expressed in terms of the diagonal ones by 
means of the polarisation identity. 

We remark that the derivati0.n of formula (3) is confined to bounded operators A .  
This depends on the fact that, for unbounded operators, the function fA becomes 
singular on that subset of H where A is not defined. For the representation of quantum 
theory, however, formula (3) is quite sufficient as the quantum mechanical lattice of 
propositions, given by the projections on closed subspaces of H, contains bounded 
operators only. 

3. Connection with hidden-variables theories 

Using equation (3) we have derived a formulation of quantum theory which fulfils the 
criteria of a hidden-variables theory as they are given e.g. by Jammer (1974). Thus we 
have derived, at least formally, a hidden variables representation of quantum theory. 
However, the situation is quite different regarding the physical content: the hidden 
variables are the elements of the state space and the fact that the elements of Hilbert 
space have no empirical meaning indicates that the theory still remains open to 
interpretation. Nonetheless, it is interesting to investigate some impossibility proofs in 
the context of the present representation. As the probabilistic formulation is mathe- 
matically equivalent to the conventional one it is obvious that all the impossibility 
proofs remain valid. 

The first and most famous proof for the impossibility of hidden variables has been 
given by von Neumann (1932). As some assumptions made in this proof have been 
regarded as physically insufficient, let us remember that Gleason (1957) has proved that 
each probability measure 7~ on the lattice of quantum mechanical propositions is 
characterised by a positive, self-adjoint operator W which satisfies Tr( W )  = 1 such that 

7 ~ (  U )  = Tr(PvW) ( 5 )  

where Pv denotes the projector on the closed subspace U of H. This theorem can be 
regarded as a justification of formula (1). By means of equation (1) von Neumann 
demonstrated that quantum theory does not admit dispersion-free states. Here a 
dispersion-free state W is defined by the property that 

Tr( WA') - (Tr( WA))2 = 0 (6) 
holds for all observables A .  Inserting for A a one-dimensional projector, von Neumann 
concluded that (6) cannot hold in general. The fact that there are no dispersion-free 
states in quantum theory seems to contradict a representation of quantum theory in 
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terms of classical probability theory as every measure space admits a Dirac measure 
which is dispersion-free. 

In the probabilistic representation of quantum theory equation (6) reads 

This differs from the expression 

as in general 

f (AZj  f (fA)’ .  (9) 

In contrast to (7), equation (8) is the definition of a dispersion-free random variable f A  

on (H, B(H)). From this it becomes obvious that the quantum mechanical meaning of 
dispersion-free is different from that of classical probability theory. This is due to the 
fact that the mathematical structure which is used to define probability in quantum 
theory by means of equation ( 5 )  is completely different from the classical lattice of 
propositions which constitutes the usual u-algebra of probability theory. Although we 
give a representation of quantum mechanics in terms of classical probability theory, the 
concepts of classical probability theory are not appropriate for quantum theory. 
Moreover, the meaning of dispersion-free in equation (8) refers to all random variables 
on H whereas the present formalism only admits special bilinear functions, a situation 
which will be investigated later on. Contrary to this, the measurable function f A  cannot 
be regarded as an ordinary random variable on H. Equation (9) already shows that f A  

does not transform like a classical random variable with respect to operator-valued 
functions k(A) .  This means that 

fk(A) = k ( f A )  (10) 

does not hold. 
The fact that, for an arbitrary probabilistic formulation of quantum theory, equation 

(10) is violated has already been pointed out by Kochen and Specker (1967). They used 
this fact as an argument for the impossibility of hidden-variables theories. In the 
present formalism the failure of (10) results from the fact that the empirical variables of 
fA(4) are the operators on H and not the vectors of H. 

The theorem of Bell (1964) states that no local hidden-variables theory for quantum 
mechanics exists. In the present formalism the condition of locality is defined by 

fAB = f A f B  (11) 

for all observables A,  B. Obviously this equation cannot hold in general as the mapping 
f does not preserve the algebraic structure of the space of observables. This indicates 
that probabilistic quantum mechanics is a non-local theory and may imply an action-at- 
a-distance which, however, refers to the Hilbert space and not to the empirical space. 

To  summarise, we can state that it is not the measure but the measurable function 
from which the impossibility of a dispersion-free representation results. This agrees 
with the general impossibility proof of Jauch and Piron (1963) which implies that no 
deterministic or causal subdynamics exist. As we have explicitly set up a formulation of 
quantum theory which satisfies the conditions of a hidden-variables theory as it is 
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defined e.g. by Jammer (1974), from an empirical point of view it seems more 
appropriate to define a hidden-variables theory by the criterion of deterministic 
subdynamics. 

4. The formal analogy between classical statistical mechanics and quantum 
mechanics 

We have derived a representation of quantum mechanics which structurally is quite 
equivalent to the formulation of classical statistical mechanics. From now on it is 
necessary to discern between a quantum state in the empirical sense which is given by 
the statistical operator W and a quantum state in the sense of classical statistical 
mechanics which is expressed by wW. As we stressed when introducing the measures in 
state space, these are not uniquely determined; they are arbitrary up to the covar: lance 
operator. As an example let us consider the pure state W = Iq5)(q51,1q51= 1. This state 
can be represented by the Dirac measure 

On the other hand, the state under consideration can also be represented by a Gaussian 
measure pG on H with zero mean. These measures which represent the same state are 
quite different as 8, is concentrated on q5 E H  such that 

whereas p~ is a continuous measure which implies 

In the empirical sense a state in (H, W ( H ) )  can be defined as an element of the quotient 
space which is obtained from the space of probability measures if equipped with the 
equivalence relation 

So, given a statistical operator W, the measure ,LLW is nearly arbitrary. Here it is not the 
elements of the sample space which are unknown; the quantity which really is hidden in 
quantum theory is the measure in state space. Einstein (cf Einstein et a1 (1935)) has 
argued that the formalism of quantum theory is not complete. The probabilistic 
formulation demonstrates the point at which quantum mechanics can be thought of as 
incomplete. 

The indeterminate nature of the measure results from the fact that we describe 
probabilities in a non-Boolean lattice in terms of classical probability theory. From the 
empirical point of view, the property that a state wW contains much more information 
than that which can be experimentally verified is connected with the structure of the 
measurable function fA. These are special quadratic functionals which only permit us to 
check the covariance operator. Preparation and measurement, expressed in the 
structure of fA, do not allow us to detect the other moments of the measure. 
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This becomes more obvious by investigation of the localisability of a system in its 
state space. Denoting by xB the characteristic function of the set B E % ( H ) ,  the 
quantity 

is constructed by analogy with the formula of classical statistical mechanics which 
determines the probability of localising the system in a certain region of phase space. 
Due to the indeterminate nature of the measures, (16) describes no empirical prob- 
ability at all as the characteristic function cannot be expressed as a quadratic functional. 

For a mixture W, W 2  < W, the indeterminate nature of the corresponding measures 
is related to the fact that a representation of a mixture in terms of pure states need not be 
unique, such that a convex combination of pure states in quantum mechanics has a 
meaning which is different from a superposition of states in classical mechanics. The 
pure states contained in the mixture permit no definite conclusion concerning the 
question of whether or not a certain subspace of N is occupied by the system. These 
properties carry over to the associated measures. Representing, e.g., the mixture W by 
means of a convex combination of Dirac measures, we reveal that this measure (and its 
support) depends on the special choice of pure states which build up the mixture. 
However, we need not confine ourselves to convex combinations of Dirac measures. A 
Gaussian measure with covariance operator W and zero mean has a closed subspace of 
H as its support but describes the same state. 

From these properties we conclude that a state on (H, B ( H ) )  contains no informa- 
tion which permits a localisation of the system in its state space. The probabilistic role 
of the statistical operator as covariance operator only determines the dispersion of the 
system; it describes the spreading of the probability but allows no determination of the 
absolute localisation. All these statements represent the arbitrary manner in which 
subsets of the state space can be occupied by the system in a definite state and give a 
quite figurative description of the intrinsic indeterminism of quantum theory. 

With respect to quantum dynamics, the indeterminate nature of the measures has 
immediate consequences. By means of W(t ) ,  t E [0, Tj, a family of measures pw(t)  can 
be constructed which describes a stochastic process with state space Hr"2T1. As the 
measures can be arbitrarily chosen at each instant of time, this stochastic process is not 
uniquely defined. Contrary to the situation in classical mechanics no specific stochastic 
process for quantum dynamics exists. This is the reason why the evolution in Hilbert 
space, which is described by the solution of the Schrodinger equation, can by no means 
be assumed to indicate a deterministic quantum mechanical evolution. There is only 
one possibility of describing the dynamics of a pure state, namely that one which 
corresponds to a family of Dirac measures. 

5. Conclusion 

In this paper we have presented a formulation of quantum theory which differs 
essentially from the conventional one. Due to the unfamiliar integration techniques in 
infinite-dimensional spaces, the advantage of the present formalism is not clear at first 
sight, so that we feel it necessary to discuss the consequences of this fact with respect to 
the methodological and substantial background. 
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From the methodological point of view we have shown that quantum theory fits into 
the scheme of classical probability theory such that all techniques of this discipline 
become available. As it is always possible to choose a Gaussian measure for the 
description of the state, the well known theory of Gaussian measures in infinite- 
dimensional space can be successfully applied. These properties can be regarded as a 
basis for an analytical application of the present formalism. 

The far reaching indeterminism involved in this formulation of quantum theory 
seems to indicate that this representation is somewhat artificial. On the one hand, this 
property may be helpful by the flexibility it implies, particularly in connection with the 
mathematical elaboration. On the other hand, the indeterminism clearly shows the 
difference between classical and quantum physics. The representation of quantum 
theory by means of classical probability theory enables us to perform a detailed 
comparison of these theories which cannot be realised by means of the conventional 
representation which uses the theory of linear transformations in Hilbert space. We 
have discussed this aspect in the last section and we are left to consider the 
consequences with respect to the interpretation of quantum theory. Our representation 
demonstrates quite clearly that the substantial difficulties of the interpretation of 
quantum mechanics relate to the meaning of probability. Both the Copenhagen 
interpretation and the statistical interpretation have aspects which are well confirmed 
by the probabilistic representation. This formulation shows how far quantum 
mechanics can be regarded as an enlargement of classical mechanics and where it is 
incomplete. On the other hand, this representation verifies that there is no deter- 
ministic subdynamics; therefore quantum mechanics is empirically complete. In the 
present context, this interplay between completeness and indeterminism is expressed 
by the properties of the measurable functions and the measures respectively. 

The failure to construct deterministic subdynamics, which has been proved by Jauch 
and Piron (1963), shows that probability in quantum theory cannot have the same 
meaning as in classical statistical mechanics. In particular, it cannot be thought of as 
expressing lack of knowledge. Probability in quantum theory is an intrinsic property of 
the system which surpasses all concepts of the subjective or objective indeterminateness 
of classical probability. It is an element which belongs to the fundamental structure of a 
physical system. 

Here we have explicitly shown that the measures or even the properties are nearly 
undetermined. This is due to the fact that a subset of the set of observables can be 
equally well regarded as statistical operators and that all statistical operators can, in 
principle, represent an observable. In contrast to classical mechanics, where a measure 
in state space is an element which can be verified empirically, a state in quantum theory, 
if represented in terms of classical probability theory, is fictive besides the fact that the 
covariance operator describes the spreading of probability in Hilbert space. From this 
we conclude that classicalprobability in quantum theory is a theoretical term which has no 
empirical meaning. 

Quantum mechanics shows two stages of indeterminacy. One is expressed by the 
fact that it is possible at all to derive a probabilistic representation: it is classical 
probability. The other one-the stage of subdynamics-is expressed by the indeter- 
minate nature of the measures. This is where quantum probability surpasses classical 
probability and from which we learn that classical probability need not refer to an 
empirical situation. The indeterminism of quantum mechanics, however, belongs to the 
empirical part of the system as it can be verified experimentally. 
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From the empirical point of view, probability in quantum mechanics is determined 
as everywhere else in physics, namely by measurement of an ensemble. From this point 
of view there is no difference between the Copenhagen interpretation and the statistical 
interpretation; both of them refer to the description of the state of a quantum system 
which is expressed in terms of classical probability-the only theory of probability at the 
time when these interpretations were proposed-by means of a measure in Hilbert 
space. As these probability measures are theoretical terms which have no empirical 
meaning, the major difference between the above mentioned interpretations, namely 
whether the state refers to an individual system or an ensemble, becomes irrelevant as 
these terms refer to empirical quantities. 
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